3.2415 \(\int \frac {(1-2 x)^{5/2} (3+5 x)^{5/2}}{2+3 x} \, dx\)

Optimal. Leaf size=172 \[ \frac {1}{15} (1-2 x)^{5/2} (5 x+3)^{5/2}+\frac {37}{360} (1-2 x)^{3/2} (5 x+3)^{5/2}+\frac {4783 \sqrt {1-2 x} (5 x+3)^{5/2}}{32400}-\frac {14557 \sqrt {1-2 x} (5 x+3)^{3/2}}{28800}-\frac {1994287 \sqrt {1-2 x} \sqrt {5 x+3}}{3110400}+\frac {109715471 \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )}{9331200 \sqrt {10}}+\frac {98}{729} \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right ) \]

[Out]

37/360*(1-2*x)^(3/2)*(3+5*x)^(5/2)+1/15*(1-2*x)^(5/2)*(3+5*x)^(5/2)+98/729*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3
+5*x)^(1/2))*7^(1/2)+109715471/93312000*arcsin(1/11*22^(1/2)*(3+5*x)^(1/2))*10^(1/2)-14557/28800*(3+5*x)^(3/2)
*(1-2*x)^(1/2)+4783/32400*(3+5*x)^(5/2)*(1-2*x)^(1/2)-1994287/3110400*(1-2*x)^(1/2)*(3+5*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {101, 154, 157, 54, 216, 93, 204} \[ \frac {1}{15} (1-2 x)^{5/2} (5 x+3)^{5/2}+\frac {37}{360} (1-2 x)^{3/2} (5 x+3)^{5/2}+\frac {4783 \sqrt {1-2 x} (5 x+3)^{5/2}}{32400}-\frac {14557 \sqrt {1-2 x} (5 x+3)^{3/2}}{28800}-\frac {1994287 \sqrt {1-2 x} \sqrt {5 x+3}}{3110400}+\frac {109715471 \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )}{9331200 \sqrt {10}}+\frac {98}{729} \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(5/2)*(3 + 5*x)^(5/2))/(2 + 3*x),x]

[Out]

(-1994287*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/3110400 - (14557*Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/28800 + (4783*Sqrt[1 -
2*x]*(3 + 5*x)^(5/2))/32400 + (37*(1 - 2*x)^(3/2)*(3 + 5*x)^(5/2))/360 + ((1 - 2*x)^(5/2)*(3 + 5*x)^(5/2))/15
+ (109715471*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(9331200*Sqrt[10]) + (98*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*
Sqrt[3 + 5*x])])/729

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a +
b*x)^m*(c + d*x)^n*(e + f*x)^(p + 1))/(f*(m + n + p + 1)), x] - Dist[1/(f*(m + n + p + 1)), Int[(a + b*x)^(m -
 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a*f) + b*n*(d*e - c*f))
*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (Integ
ersQ[2*m, 2*n, 2*p] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \frac {(1-2 x)^{5/2} (3+5 x)^{5/2}}{2+3 x} \, dx &=\frac {1}{15} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {1}{15} \int \frac {\left (-50-\frac {185 x}{2}\right ) (1-2 x)^{3/2} (3+5 x)^{3/2}}{2+3 x} \, dx\\ &=\frac {37}{360} (1-2 x)^{3/2} (3+5 x)^{5/2}+\frac {1}{15} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {1}{900} \int \frac {\left (-\frac {4705}{2}-\frac {23915 x}{4}\right ) \sqrt {1-2 x} (3+5 x)^{3/2}}{2+3 x} \, dx\\ &=\frac {4783 \sqrt {1-2 x} (3+5 x)^{5/2}}{32400}+\frac {37}{360} (1-2 x)^{3/2} (3+5 x)^{5/2}+\frac {1}{15} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {\int \frac {\left (\frac {30935}{4}-\frac {1965195 x}{8}\right ) (3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)} \, dx}{40500}\\ &=-\frac {14557 \sqrt {1-2 x} (3+5 x)^{3/2}}{28800}+\frac {4783 \sqrt {1-2 x} (3+5 x)^{5/2}}{32400}+\frac {37}{360} (1-2 x)^{3/2} (3+5 x)^{5/2}+\frac {1}{15} (1-2 x)^{5/2} (3+5 x)^{5/2}+\frac {\int \frac {\sqrt {3+5 x} \left (\frac {15459435}{8}+\frac {29914305 x}{16}\right )}{\sqrt {1-2 x} (2+3 x)} \, dx}{486000}\\ &=-\frac {1994287 \sqrt {1-2 x} \sqrt {3+5 x}}{3110400}-\frac {14557 \sqrt {1-2 x} (3+5 x)^{3/2}}{28800}+\frac {4783 \sqrt {1-2 x} (3+5 x)^{5/2}}{32400}+\frac {37}{360} (1-2 x)^{3/2} (3+5 x)^{5/2}+\frac {1}{15} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {\int \frac {-\frac {526625355}{16}-\frac {1645732065 x}{32}}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx}{2916000}\\ &=-\frac {1994287 \sqrt {1-2 x} \sqrt {3+5 x}}{3110400}-\frac {14557 \sqrt {1-2 x} (3+5 x)^{3/2}}{28800}+\frac {4783 \sqrt {1-2 x} (3+5 x)^{5/2}}{32400}+\frac {37}{360} (1-2 x)^{3/2} (3+5 x)^{5/2}+\frac {1}{15} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {343}{729} \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx+\frac {109715471 \int \frac {1}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx}{18662400}\\ &=-\frac {1994287 \sqrt {1-2 x} \sqrt {3+5 x}}{3110400}-\frac {14557 \sqrt {1-2 x} (3+5 x)^{3/2}}{28800}+\frac {4783 \sqrt {1-2 x} (3+5 x)^{5/2}}{32400}+\frac {37}{360} (1-2 x)^{3/2} (3+5 x)^{5/2}+\frac {1}{15} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {686}{729} \operatorname {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )+\frac {109715471 \operatorname {Subst}\left (\int \frac {1}{\sqrt {11-2 x^2}} \, dx,x,\sqrt {3+5 x}\right )}{9331200 \sqrt {5}}\\ &=-\frac {1994287 \sqrt {1-2 x} \sqrt {3+5 x}}{3110400}-\frac {14557 \sqrt {1-2 x} (3+5 x)^{3/2}}{28800}+\frac {4783 \sqrt {1-2 x} (3+5 x)^{5/2}}{32400}+\frac {37}{360} (1-2 x)^{3/2} (3+5 x)^{5/2}+\frac {1}{15} (1-2 x)^{5/2} (3+5 x)^{5/2}+\frac {109715471 \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )}{9331200 \sqrt {10}}+\frac {98}{729} \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 123, normalized size = 0.72 \[ \frac {30 \sqrt {-(1-2 x)^2} \sqrt {5 x+3} \left (20736000 x^4-11836800 x^3-11943840 x^2+8506260 x+2165117\right )+12544000 \sqrt {14 x-7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )-109715471 \sqrt {10-20 x} \sinh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {2 x-1}\right )}{93312000 \sqrt {2 x-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((1 - 2*x)^(5/2)*(3 + 5*x)^(5/2))/(2 + 3*x),x]

[Out]

(30*Sqrt[-(1 - 2*x)^2]*Sqrt[3 + 5*x]*(2165117 + 8506260*x - 11943840*x^2 - 11836800*x^3 + 20736000*x^4) - 1097
15471*Sqrt[10 - 20*x]*ArcSinh[Sqrt[5/11]*Sqrt[-1 + 2*x]] + 12544000*Sqrt[-7 + 14*x]*ArcTan[Sqrt[1 - 2*x]/(Sqrt
[7]*Sqrt[3 + 5*x])])/(93312000*Sqrt[-1 + 2*x])

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 117, normalized size = 0.68 \[ \frac {1}{3110400} \, {\left (20736000 \, x^{4} - 11836800 \, x^{3} - 11943840 \, x^{2} + 8506260 \, x + 2165117\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1} + \frac {49}{729} \, \sqrt {7} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - \frac {109715471}{186624000} \, \sqrt {10} \arctan \left (\frac {\sqrt {10} {\left (20 \, x + 1\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{20 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(5/2)/(2+3*x),x, algorithm="fricas")

[Out]

1/3110400*(20736000*x^4 - 11836800*x^3 - 11943840*x^2 + 8506260*x + 2165117)*sqrt(5*x + 3)*sqrt(-2*x + 1) + 49
/729*sqrt(7)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 109715471/186624
000*sqrt(10)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3))

________________________________________________________________________________________

giac [A]  time = 2.27, size = 212, normalized size = 1.23 \[ -\frac {49}{7290} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + \frac {1}{77760000} \, {\left (12 \, {\left (8 \, {\left (36 \, {\left (48 \, \sqrt {5} {\left (5 \, x + 3\right )} - 713 \, \sqrt {5}\right )} {\left (5 \, x + 3\right )} + 112817 \, \sqrt {5}\right )} {\left (5 \, x + 3\right )} - 655065 \, \sqrt {5}\right )} {\left (5 \, x + 3\right )} - 9971435 \, \sqrt {5}\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + \frac {109715471}{186624000} \, \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{4 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(5/2)/(2+3*x),x, algorithm="giac")

[Out]

-49/7290*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^
2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 1/77760000*(12*(8*(36*(48*sqrt(5)*(5*x + 3) - 713*sq
rt(5))*(5*x + 3) + 112817*sqrt(5))*(5*x + 3) - 655065*sqrt(5))*(5*x + 3) - 9971435*sqrt(5))*sqrt(5*x + 3)*sqrt
(-10*x + 5) + 109715471/186624000*sqrt(10)*(pi + 2*arctan(-1/4*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(
22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 149, normalized size = 0.87 \[ \frac {\sqrt {-2 x +1}\, \sqrt {5 x +3}\, \left (1244160000 \sqrt {-10 x^{2}-x +3}\, x^{4}-710208000 \sqrt {-10 x^{2}-x +3}\, x^{3}-716630400 \sqrt {-10 x^{2}-x +3}\, x^{2}+510375600 \sqrt {-10 x^{2}-x +3}\, x +109715471 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )-12544000 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+129907020 \sqrt {-10 x^{2}-x +3}\right )}{186624000 \sqrt {-10 x^{2}-x +3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x+1)^(5/2)*(5*x+3)^(5/2)/(3*x+2),x)

[Out]

1/186624000*(-2*x+1)^(1/2)*(5*x+3)^(1/2)*(1244160000*(-10*x^2-x+3)^(1/2)*x^4-710208000*(-10*x^2-x+3)^(1/2)*x^3
-716630400*(-10*x^2-x+3)^(1/2)*x^2+109715471*10^(1/2)*arcsin(20/11*x+1/11)-12544000*7^(1/2)*arctan(1/14*(37*x+
20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+510375600*(-10*x^2-x+3)^(1/2)*x+129907020*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^
(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.29, size = 112, normalized size = 0.65 \[ \frac {1}{15} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {5}{2}} + \frac {37}{72} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x - \frac {787}{12960} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} + \frac {79439}{51840} \, \sqrt {-10 \, x^{2} - x + 3} x + \frac {109715471}{186624000} \, \sqrt {10} \arcsin \left (\frac {20}{11} \, x + \frac {1}{11}\right ) - \frac {49}{729} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {865517}{3110400} \, \sqrt {-10 \, x^{2} - x + 3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(5/2)/(2+3*x),x, algorithm="maxima")

[Out]

1/15*(-10*x^2 - x + 3)^(5/2) + 37/72*(-10*x^2 - x + 3)^(3/2)*x - 787/12960*(-10*x^2 - x + 3)^(3/2) + 79439/518
40*sqrt(-10*x^2 - x + 3)*x + 109715471/186624000*sqrt(10)*arcsin(20/11*x + 1/11) - 49/729*sqrt(7)*arcsin(37/11
*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 865517/3110400*sqrt(-10*x^2 - x + 3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (1-2\,x\right )}^{5/2}\,{\left (5\,x+3\right )}^{5/2}}{3\,x+2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(5/2)*(5*x + 3)^(5/2))/(3*x + 2),x)

[Out]

int(((1 - 2*x)^(5/2)*(5*x + 3)^(5/2))/(3*x + 2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)*(3+5*x)**(5/2)/(2+3*x),x)

[Out]

Timed out

________________________________________________________________________________________